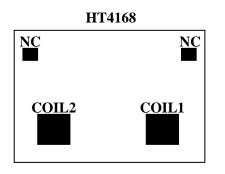


HT4168 Transmission IC for RFID read only


Summary

HT4168 is the RFID read transmission circuit that is formed by CMOS. The electronic power is provided by the electronic coil of HT4168's 2 pins, and the operation pulse is provided through the same path. HT4168's application is to adjust radio frequency to make 64 bits data loading on RF. This is the reason that HT4168 can transfer data by RFID.

Outside circuit

HT4168's pin Assignment

COIL1 / CLOCK INPUT COIL2 / DATA TRANSMISSION PAD size 106um*106um Chip size 698umx595um Fig.(=)

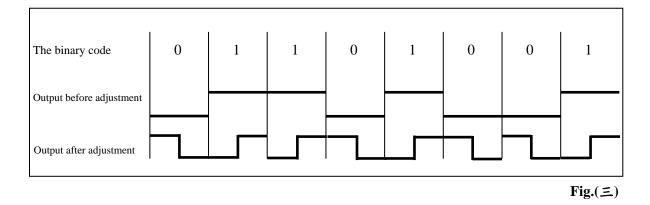
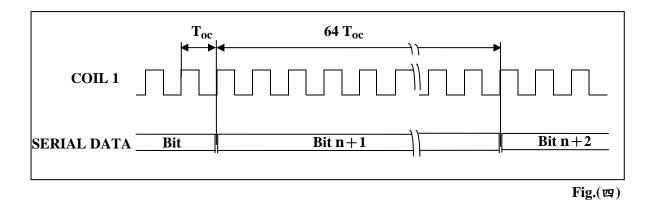
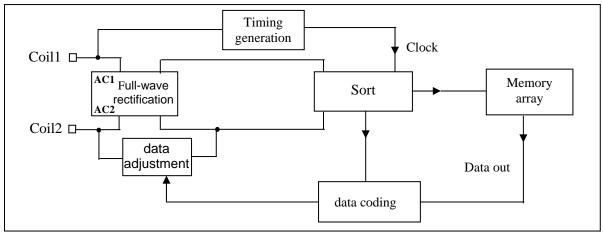

Electronic condition

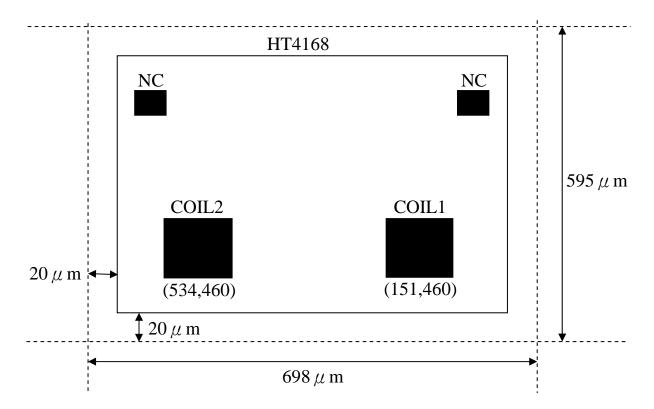
Table (-)


Parameter	Min	Typical	Max	Unit
operation temperature	-40		+85	°C
operation voltage	3.5	5		V
operation frequency	100		150	MHz
storage temperature	-55		+200	°C
ESD capability		2000		V


Code Format

TIMING

IC BLOCK


MEMORY ARRAY

THE HT4168 CONTAINS 64 BITS DIVIDED IN FIVE GROUPS OF INFORMATION. 9 BITS ARE USED FOR THE HEADER, 10 ROW PARITY BITS (P0-P9), 4 COLUMN PARITY BITS (PC0-PC3), 40 DATA BITS (D00-D93), AND 1 STOP BIT SET TO LOGIC 0.

			-	
1 1 1 1	1 1	1 1	1	- 9 BITS HEADER
8 VERSION BITS OR	D00 D01	D02 D03	PO	- 4 DATA BITS AND
CUSTOMER ID	D10 D11	D12 D13	P1	ASSOCIATED EVEN ROW PARIY
	D20 D21	D22 D23	P2	BIT
	D30 D31	D32 D33	P3	
32 DATA BITS	D40 D41	D42 D43	P4	
ALLOWING 4 BILLION	D50 D51	D52 D53	P5	
OF COMBINATIONS	D60 D61	D62 D63	P6	
	D70 D71	D72 D73	P7	
	D80 D81	D82 D83	P8	- 4 COLUMN EVEN PARITY BITS,
	D90 D91	D92 D93	P9	NO ROW PARITY BIT
	PC0 PC1	1 PC2 PC3	0	

THESE 64 BITS ARE OUTPUTTED SERIALLY IN ORDER TO CONTROL THE MODULATOR USED TO MODIFY THE CURRENT AT ONE OF THE COIL TERMINALS. WHEN THE 64 BITS DATA STRING IS OUTPUTTED, THE OUTPUT SEQUENCE IS REPEATED CONTINUOUSLY UNTIL POWER GOES OFF.

CHIP DIMENSIONS

