

HT4188 Transmission IC for RFID read only

Summary

HT4188 is the RFID read transmission circuit that is formed by CMOS. The electronic power is provided by the electronic coil of HT4188's 2 pins, and the operation pulse is provided through the same path. HT4188's application is to adjust radio frequency to make 64 bits data loading on RF. This is the reason that HT4188 can transfer data by RFID.

Outside circuit

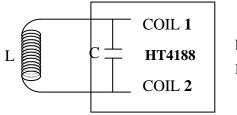
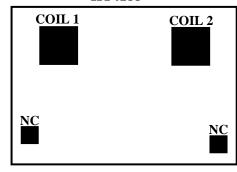



Fig.(—)
IC capacitor 480pF

HT4188's pin Assignment

HT4188

COIL1 / CLOCK INPUT
COIL2 / DATA TRANSMISSION
PAD size 90um*90um
Chip size 579um×470um
Fig.(二)

Electronic condition

Table (—)

Parameter	Min	Typical	Max	Unit
operation temperature operation voltage operation frequency storage temperature ESD capability	-40 3.5 100 -55	5 2000	+85 150 +200	°C V MHz °C V

Code Format

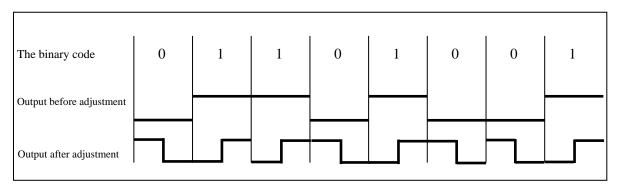


Fig.(三)

TIMING

Fig.(四)

IC BLOCK

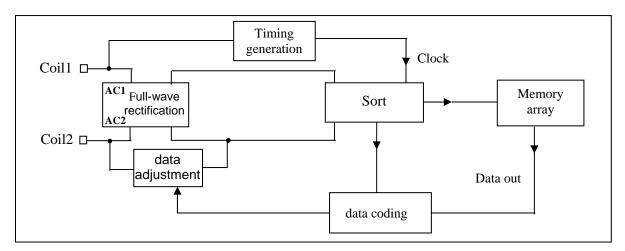


Fig.(五)

MEMORY ARRAY

THE HT4188 CONTAINS 64 BITS DIVIDED IN FIVE GROUPS OF INFORMATION. 9 BITS ARE USED FOR THE HEADER, 10 ROW PARITY BITS (P0-P9), 4 COLUMN PARITY BITS (PC0-PC3), 40 DATA BITS (D00-D93), AND 1 STOP BIT SET TO LOGIC 0.

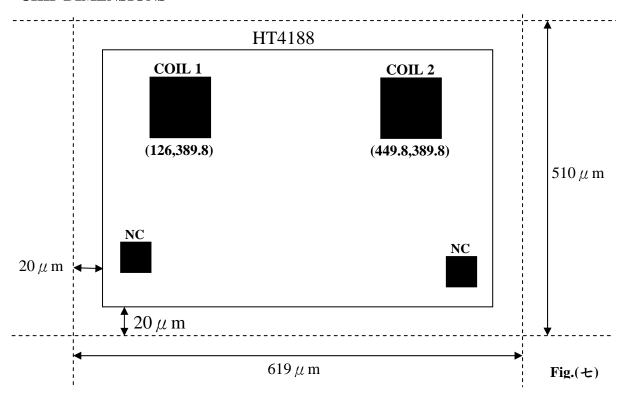

1 1 1 1	1 1	1	1	1	- 9 BITS HEADER
8 VERSION BITS OR	D00 D0	1 D02	D03	PO	- 4 DATA BITS AND
CUSTOMER ID	D10 D1	1 D12	D13	P1	ASSOCIATED EVEN ROW PARIY
	D20 D2	1 D22	D23	P2	BIT
	D30 D3	1 D32	D33	P3	
32 DATA BITS	D40 D4	1 D42	D43	P4	
ALLOWING 4 BILLION	D50 D5	1 D52	D53	P5	
OF COMBINATIONS	D60 D6	1 D62	D63	P6	
	D70 D7	1 D72	D73	P7	
	D80 D8	1 D82	D83	P8	- 4 COLUMN EVEN PARITY BITS,
	D90 D9	1 D92	D93	P9	NO ROW PARITY BIT
	PC0 PC	C1 PC2	2 PC3	0	

Fig.(六)

THE HEADER IS COMPOSED BY THE 9 FIRST BITS WHICH ARE MASK PROGRAMMED TO 1 1 1 1 1 1 1 1 1 1 1 DUE TO THE DATA AND PARITY ORGANISATION, THIS SEQUENCE CANNOT BE REPRODUCED IN THE DATA STRING. THE HEADER IS FOLLOWED BY 10 GROUPS OF 4 DATA BITS AND 1 EVEN ROW PARITY BIT. THEN, THE LAST GROUP CONSISTS OF 4 EVEN COLUMN PARITY BITS WITHOUT ROW PARITY BIT. BITS D00 TO D03 AND BITS D10 TO D13 ARE CUSTOMER SPECIFIC IDENTIFICATION.

THESE 64 BITS ARE OUTPUTTED SERIALLY IN ORDER TO CONTROL THE MODULATOR USED TO MODIFY THE CURRENT AT ONE OF THE COIL TERMINALS. WHEN THE 64 BITS DATA STRING IS OUTPUTTED, THE OUTPUT SEQUENCE IS REPEATED CONTINUOUSLY UNTIL POWER GOES OFF.

CHIP DIMENSIONS

